
Grekiska och bysantinologi: självständigt arbete 15 hp
Juni 2024

AMacronizer for Ancient Greek
Albin Thörn Cleland

A Macronizer for Ancient Greek
Albin Thörn Cleland

Abstract
Much philological work on Ancient Greek texts hinges on correctly disambiguating the vowel length
of the so-called dichrona vowels, α, ι and υ, a process known as macronization. Inspired by the
Latin macronizer of Winge (2015), it is shown how the vowel lengths of Ancient Greek tokens can
be programatically compiled into a dictionary using digital grammars, lexica and other sources,
a first step towards a macronizer for Ancient Greek. Given three hundred thousand morphologi-
cally tagged tokens from all the extant Ancient Greek tragedies, around forty-two thousand tokens
containing the ambiguities in question are culled out. Vowel length data from two dictionaries,
a Ruby lemmatizer and an online repository of scanned verse is crawled and carefully collated,
disambiguating roughly half of the tragic corpus. Finally, a number of ways in which the percent-
age of macronized dichrona can be increased algorithmically are presented, with three of them
solely “shuffling around” the data already contained in the sourced dictionary, and two requiring
formalization of morphological rules, such as those governing prefixes and the endings of nominal
forms.

Institutionen för lingvistik och filologi

Uppsala universitet

Handledare: Eric Cullhed

Examinator: David Westberg

... while it is not difficult to learn by heart the prosodic length of a restricted
number of inflections and small words, it takes an incredible intellectual effort to
memorize the prosodic length of thousands and thousands of words.

Lauxtermann 2022, p. 125.

... λέγω μετὰ δακρύων,
Ἀνάθεμαν τὰ γράμματα.

Ptochoprodromiká 3

1

Caveat Emptor
If the present presentation appears to be on the (excessively) shorter side of a master thesis,
the reader is urged to remember the words of Apollo to Callimachus:

[...] “ἀοιδέ, τὸ μὲν θύος ὅττι πάχιστον
θρέψαι, τὴν Μοῦσαν δ᾿ ὠγαθὲ λεπταλέην”

If this written thesis is my slender song, my fat sacrificial lamb (spaghetti code does make
you fat!) is the accompanying software, which I humbly present to the community of digital
Greek scholarship. The majority of my effort lies ploughed down there, not here.

Furthermore, I am not a software engineer, and this report mirrors my efforts to come to
grips with the technologies of digital philology as much as it mirrors the research eventually
accomplished by way of them. Precisely because of this, I think it may prove useful and
inspiring for scholars who have yet to use digital tools.

2

Contents
1 Introduction 4

1.1 Prosody and Dichrona . 4
1.2 Dichrona and Meter . 5

1.2.1 Research Question and Dionysus Recomposed 5
1.2.2 Epistomology of Quantity . 6

2 Technical Report: Problems, Solutions, and Results 8
2.1 Preparing the Tokens . 8

2.1.1 Mending Tokens . 8
2.1.2 Unicode . 10
2.1.3 Sieving Tokens . 12

2.2 Crawling for Macrons . 16
2.2.1 Wiktionary . 17
2.2.2 Hypotactic . 18
2.2.3 Ifthimos . 20
2.2.4 LSJ . 22

2.3 Conscientious Collation . 22
2.4 Algorithmic Approaches . 23

2.4.1 Morphology . 24

3 Conclusion 28
3.1 Summary . 28
3.2 Whither Greek Macronizer? . 29

4 Appendix I: macrons.tsv 30

5 Appendix II: Postag Legend 31

Bibliography 33

3

1 Introduction
1.1 Prosody and Dichrona

... τὴν θ’ ὁμηρείαν φύσιν
ἀλλοπροσάλλως διχρόνοις χρῆσθαι λέγει,
τὸ «Ἆρες, Ἄρες» πανταχοῦ βοῶν μέγα
(Βρεντησίου μένδητος ὦ πατρὸς τέκνον!).

He [...] keeps saying that Homer uses the dichrona as it suits him, while
bellowing «Ἆρες, Ἄρες» on every occasion (oh that bastard from Brindisi!).

Tzetzes, Schol. Ar. Plut. 43.31-44.2 Massa Positano.
Transl. in Lauxtermann 2022.

Ancient Greek (hereafter, simply ‘Greek’) prosody1 is distinguished by two key charac-
teristics.2 The first is pitch accent, as found in e.g. Swedish, Norwegian, Lithuanian, Serbian
and Japanese.3 The second is phonemic vowel length, as found in e.g. Latin, Biblical Hebrew,
Sanskrit, Japanese, Finnish, Hungarian and Thai.

Each of the ten vowels of Greek has one of two phonemic vowel lengths: long or short.
During the history of the Greek alphabets and diacritics, different solutions have abounded
as to how to represent these vowels graphically.4 When the goal is to fully disambiguate their
lengths, the following set of letters is preferred:

α, ᾱ, ε, η, ι, ῑ, ο, υ, ῡ, ω (1)

ᾱ, η, ῑ, ῡ, ω are long, the rest are short. The bar above three of the letters is known as a
macron (using the Greek term; plural macra or macrons) or longum (using the Latin; plural
longa).5 In some early Greek scripts, all ten vowels could be down to sharing as few as five
letters6:

α, ε, ι, ο, υ (2)
1Already in the ancient grammarians, there were two concepts of prosody, one wider and one narrower.

Narrowly conceived, prosody solely refers to the pitch variations of the language and the signs used to indicate
them (this sense of προσῳδία is translated into Latin as accentus). I here use prodosy in the wider sense, which
includes not only pitch accents, tone contours and their three diacritics, but also (most importantly for us)
vowel length, aspiration, and in a word, everything that relates to the suprasegmental aspects of pronunciation
and their diacritical apparatus (see the very readable introduction to Probert 2003, especially p. 3).

2Note on the epigraph: ‘Ἆρες, Ἄρες βροτολοιγὲ μιαιφόνε τειχεσιπλῆτα...’ (Il. 5, 31); see LSJ s.v., A, III,
“epith. of Zeus, as the avenger of perjury”.

3Pitch accent is distinguished from phonemic tone by not being lexical and by often being suprasegmental
(spanning more than one phoneme or one syllable); pitch accents depend on inflection and context of use and
hence do not carry absolute semantics in the way, say, the tone of a Chinese lemma does. If, say, Swedish were
tonal, we would have to concede that the lexical meaning of ‘äter’ was different from ‘äta’, since the root has
different pitch.

4In the following, the history of the actual looks and shapes of the letters is not relevant, only the number of
distinct vowel letters and the number of vowels of differing length classes referred to by each. I’m hence using
the standard small letters throughout.

5As we shall see, there’s also a diacritic indicating short vowel length, e.g. ᾰ; it is referred to as a breve,
plural brevia.

6Transliterations of Linear B typically use exactly the following set. Although a large syllabary, Linear B
C+V graphemes can nonetheless only end on one of five different vowels. This is true for the Japanese syllabary
as well, and it makes sense to be frugal: disambiguating a single new vowel would add one new grapheme for
every consonant.

4

Here each letter could represent either a long or a short vowel, and it was up to the reader to
disambiguate based on context whether, say, an inscribed ο was “in fact” an ω or an α an ᾱ.

For historical reasons, a middle ground was eventually established as canonical and is, its
shortcomings notwithstanding, still the most common:

α, ε, η, ι, ο, υ, ω (3)

In this system, the three vowel letters α, ι, υ still underdetermine vowel length. Collectively,
they are known as the dichrona (singular dichronon), literally ‘two-timed’, or sometimes, as
in French ancipites and Italian ancipiti, as anceps vowels.

It is imperative to note that it is the letter, the grapheme, that is dichronon and not the
vowel. It is a question of underdetermination of reference by referee, not of any intrinsic
ambivalence in the underlying phonemes. As vowel length disappeared from the Greek lan-
guage, the strictly unrelated phenomenon of poets’ substituting long root vowels for short
ones to facilitate the meter (cf. Homer’s Ἆρες, Ἄρες in the initial quote above), a product
of an oral culture, was predictably confounded with the strictly graphical concept of the
dichronon, leading Byzantine scholars to waste rivers of ink and much gusto on metaphys-
ical hypotheses regarding the esoteric ways in which dichrona wobbled and waved between
lengths, like vowel versions of Schrödinger’s cat, including inventing ridiculous words like
ἀδιαφοροδιχρονισταί.(Lauxtermann 2022).

What these scholars did get was that dichrona are primarily relevant to the study of meter,
which provides a segue to the next section.

1.2 Dichrona and Meter
1.2.1 Research Question and Dionysus Recomposed
The impetus for the present investigation is intimately tied to the planning for a potential
digital-humanities research project called Dionysus Recomposed, led by Eric Cullhed. With
the goal of harnessing the power of large language models to efficiently generate, and then
promptly sift through and eliminate, enormous numbers of conjectures for gaps in papyri
fragments of ancient tragedies, Dionysus Recomposed will need to formalize as many stilo-
metric strictures as possible for the evaluation of tragic verse. Among the most important
strictures is metre. Since meter is nothing but sequences of heavy and light syllables 7, a
prerequisite for metrical analysis is that all dichrona in open syllables are disambiguated as
long or short.8

In the unpublished description of his project, Cullhed writes that

A key problem in automating the analysis of these patterns is the ambiguous
vowel length of α, ι, and υ. Therefore, a comprehensive metrical analysis system
requires the inclusion of a macronizer. The Makron program will parse sentences
with a part-of-speech and morphological tagger (e.g., odyCy; see Kostkan et al.
2023), decompose words into their stem, prefix, and endings, and then accurately
mark all instances of α, ι, and υ with either a macron or a breve, guided by
a dictionary compiled from grammars and lexica. The format of vowel
length markers often varies from entry to entry (for example, in LSJ, macra and
brevia may appear in the lemma or as elliptical notes within the article). Manually

7Light syllables are open, have short vowels and do not stand at line end. A syllable that’s not light is heavy.
8Strictly, the length of open-syllable dichrona at line end does not effect the meter. They can however add

to stilometrically interesting statistics regarding the treatment of anceps position.

5

sifting through this prosodic information on a word-by-word basis would be labor-
intensive. However, large language models with large context windows (such as
GPT-4, Gemini 1.5, or Mixtral 8x7b) can be fine-tuned to sift through each entry
and methodically extract the relevant information as structured data. Makron,
which will be released as open source, will have a wide range of applications in
the automatic analysis of prose rhythm and meter.

The present thesis describes my attempt at creating that dictionary for Makron by pro-
gramming. Hence, the research question answered is:

How does one programmatically compile a dictionary of macron and breve data
for a large set of Ancient Greek tokens?

For reasons of scope, the work described in the following report has been done under the
following restrictions:

• Only tokens from the surviving ancient tragedies are considered.
• The exact integration into the larger metrical software is not considered (but briefly

discussed in the conclusion).
• The main focus is on sourcing macrons that cannot easily be inferred from either the

prosodical rules or the general declension and conjugation tables.

The first restriction was suggested to me by Eric Cullhed, as the domain of Dionysus
Recomposed is tragedy. The precise import of the last restriction will become clear when the
work process is described, and indications for how the restriction may fairly easily be lifted
through future research are given in the conclusion.

1.2.2 Epistomology of Quantity

The problem of alpha in lyrics is insoluble; we cannot expect consistency or
accurate etymological knowledge from the poet.

Lloyd-Jones, Sophoclis Fabulae, xiv

In the field of dichrona, scholars have since antiquity met with two obstacles worthy of
being called epistemological in the philosophical sense, since they pertain not only to that
transient lack of knowledge, the border of which is constantly pushed back, characteristic of
all sciences at any one instance, but to the presence of permanent and immutable underde-
termination.

The first obstacle has already been mentioned, namely that switching between vowel
length classes in general, and not only with regard to dichrona, is subject to poetical licence.
I would like to say a few more words on the topic here. The second one, which I will treat
afterwards, is what Allen called “hidden quantities”.

I have chosen the above quote by Lloyd-Jones as symptomatic of the dilemma faced by the
vowel length inquirer: what is the goal, what is the “real” vowel length? The one intended
by the poet or the “etymologically correct” one? If the former: what does it mean, or would
it mean, that a poet makes a mistake in the identification of vowel lengths in his own poem?

Of course, whether we are concerned with later poets from the Imperial era and beyond or
with classical authors makes a big difference: when Gregory of Nazianzus treats a dichronon
as short that was spoken long in ancient Attica, it arguably implies a failure to conform to
his own project of reviving a by his time obsolete prosodical feature, and hence a failure of

6

intention. In other words, one may readily imagine Gregory thankful and considering the
point well-taken, would he have been presented with evidence of the correct ancient usage.

A classical or archaic poet, an Attic tragedian say, on the other hand, arguably most often
based what he wrote on what he heard. Opinions differ, though, regarding the extent to which
such a poet’s prosody and phonology was archaic even by the standards of his own day. A
quick look at the data collected in The Phonology of Attic Greek in the Hellenistic Period
(Teodorsson 1978, p. 21, 24) for example shows ΕΙ as an orthographic error substituting both
for /i/ and /iː/.

However, it is far from certain——indeed, it is implausible prima facie——that when
“poetical licence” invites a poet to at one time write ὕ̆δωρ (Il. 18.347) and at another ὕδ̄ωρ
(15.37), all the variants reflect words he has actually heard spoken outside of music (just like
nobody would expect the melismas of a Monteverdi aria to reflect the absurd syllables of
some outlandish dialect of Italian).

At the end of the day, if we are primarily interested in vowel length qua evidence for verse
scansion, then vowel length partakes of an hermeneutic circle: it’s meaning and intention will
be vicarious in the sense that it depends on the meaning and intention of the metre of the
whole line, which in its turn depends on a system of stanzas that may exhibit responsion and
other interlinear phenomena. It is only in the situation where there is a draw between two
or more fully fleshed-out metrical interpretations, that we have to bite the sceptical bullet.

The second obstacle regards the status of dichrona in closed syllables, where the weight of
the syllable as it were “hides” the length of the vowel. Unlike dichrona in open syllables, we
cannot rely on metrics out (cf.2.2.2). Allen gives the following philological sources for hidden
quantities:

a. Orthographical errors: ΕΙ for long Ι in Hellenistic inscriptions (cf. Teodorsson loc.
cit. above on short Ι), ”particularly after about 100 B.C.” E.g. ῥίπτω is long because we
see ΡΕΙΠΤΩ.

b. Dialects: Attic α is long where there is a corresponding Ionic η

c. Derivates with open syllables: e.g. ῤι-πή is found in arsis position, ergo ῥίπτω is
long.

d. Prosodical rules: Prosodical rules work on a vowel level, unlike the syllabic rules of
metrics. Circumflexes hence indicate both that the vowel it is on is long and that the
eventual following ultima is short. Inflectional generalizations are shaky, however: for
example we have gen. κήρῡκος in spite of nom. κῆρυξ.

e. Cases specifically mentioned by the ancient grammarians: e.g. “τὸ ῥᾱξ́ [...]
ἐκτεταμένον ἔχει τὸ α.” (Herodian (?), < Περὶ διχρόνων > 1, Pontani 2020, p. 169)

I may add a further tentative item to the list, namely comparative Indo-European ety-
mology (cf. Lloyd-Jones remark).

It should follow immediately from this scanty list of sources, that a relatively large number
of hidden quantities are not presently known, and that even though a subset of them will
certainly be disambiguated in light of new findings (every few years a new Περὶ διχρόνων
seems to be found on some half-rotten palimpsest), a good few of them will have been lost to
time.

Although hidden dichrona do not play any role in mainstream metrics, in a more fine-
grained analysis they do decide whether a syllable is heavy or superheavy, i.e. has a long

7

Albin
Unlike FOR dichrona in open syllables, we cannot rely on metrics HERE

vowel followed by a consonant cluster,9 which provide a way to find stylistic variation within
the same scansion pattern. Their use for the field of historical phonology need hardly be
mentioned, as well as the obvious guidance they provide for whoever wants to read a Greek
text aloud, e.g. a participant in a modern staging of an ancient play where it is important
that all singers and instrumentalists keep time in the same way.

For all of the above reasons, I found it worthwhile not to filter hidden dichrona out of the
“wishlist” I brought to the crawling10, even though I judge my results mainly on the basis of
the macronization of dichrona in open syllables.

2 Technical Report: Problems, Solutions, and Results
This report chronicles the step-wise creation of a dictionary containing as many as possible
of the vowel lengths of the dichrona vowels appearing in tokens from the tragic corpus. There
were four main steps: firstly, preparation of a list of the tokens that needed disambiguation,
secondly, crawling for the vowel lengths of said tokens, thirdly, collation of the crawled data,
and last but not least indications of how the collated data can be expanded and generalized
algorithmically.

Apart from the interface with ifthimos which I had to write in Ruby, all the coding was
done in Python, a relatively readable and pedagogical programming language that is the
standard for a wide range of scientific uses, including philological. The code is available on
the dedicated public GitHub repository found here.11 An excerpt from the latest version of
the resulting macron dictionary is included as appendix I.

The reader who wishes to clone the repository and try to run some of the scripts needs
to install the latest version of Python. The file readme.md contains a list of most of the
third-party packages that the code depends on.

2.1 Preparing the Tokens
2.1.1 Mending Tokens
I started out with the result of odyCy (Kardos and Kostkan 2023) lemmatizing and parts-
of-speech tagging all the ancient tragedies, a 300 595 line long tab-separated file. Here is the
beginning of the file, a tokenization of the first line from Euripides IT :

NOUN Πέλοψ n-s---mn-πέλοψ
DET ὁ l-s---mn-ὁ
ADJ Ταντάλειος a-s---mn-Ταντάλειος
ADP ἐς r--------εἰς
NOUN Πῖσαν n-s---fa-Πῖση
VERB μολὼν v-sapamn-βλώσκω

The tabs from left to right are part of speech, token, tag (or postag) and lemma, where the
tag n-s—mn- is read as “noun singular masculine nominative” (I’ve added a full list of how

9Dionysus of Halicarnassus noted the many possible lengths of closed syllables, and the different stylistic
ends they can be put to. An example of a modern philological analysis repeatedly referring to superheavy
syllables is Devine and Stephens 1994.

10In the special sense used here, to crawl means to digitally go through files or websites in order to index the
information contained therein, with a view to facilitating searching for and retrieving data.

11Github is an online service to keep track of the versions of code repositories. This means that every single
step of the coding of my project is documented and can be retraced.

8

https://github.com/Urdatorn/greek-macronizer

to read the tags as an appendix). Though this particular sentence is fine, a large part of the
headache of the project relates to bugs and oddities introduced by the tokenization. Hence,
to understand the way in which the tokens have been extracted and the artifacts created in
the process is crucial. Take as an example of a problematic line Soph. Ajax 699f,

Νύσια a-p---na-Νύσιος
Κνώσι n-p---na-Κνώσι
’ n-p---na-’
ὀρ n-p---na-ὀρ
-u---------
χήματ n-p---na-χήματ
’ n-p---na-’
αὐτοδαῆ a-p---na-αὐτοδαής
ξυνὼν v-sppamn-ξυνὼν
ἰάψῃς v2sasa---ἰάπτω

Obviously, words followed by a line with an elision mark, need to be reunited with this
mark (Κνώσι, χήματ + ’), and words encircling a line-break mark need to be joined together
(ὀρ + χήματ).12

Now, the use of dashes for ellipses could have created confusion, as e.g. Eur. IT 1, 23,
”τίκτει — τὸ καλλιστεῖον εἰς ἔμ᾽ ἀναφέρων —”

— u--------—
τὸ l-s---na-ὁ
καλλιστεῖον n-s---na-καλλιστεῖον
εἰς r--------εἰς
ἔμ p-s---ma-ἔμ
’ p-s---ma-’
ἀναφέρων v-sppamn-ἀναφέρω
— u--------—

Luckily, the two usages have (hopefully consistently!) separate unicodes: the line-break
is a short en dash, same as in the tag, while the ellipsis is surrounded by two em dashes.

The third needed fix is exemplified by Soph. OC 1733,

"ἄγε με, καὶ τότ᾽ ἐπενάριξον":

Ἄγε v3siia---ἄγω
με p-s---ma-ἐγώ
,u--------,
καὶ c--------καί
τότ’ d--------τότ
<d--------<
ἐπ r--------ἐπ
>d-------->
ενάριξον v1saia---ενάριξον
. u--------.

12What is elision in Greek? In polysyllabic words, all final short vowels except ypsilon (CGCG 1.36) may
be elided sometimes: α (ἆρ᾽), ε (ὅτ᾽), ι (ἔστ᾽), ο (ἀφ᾽ οὗ). In monosyllabic words, only epsilon. For a striking
example in action from the Aeschylean corpus, see:

ἔτ᾽ ἆρ᾽ Ἀθηνῶν ἔστ᾽ ἀπόρθητος πόλις; (Pers. 348)

9

An editor has conjectured to add the prefix ’ἐπι’ to ’ἐνάριξον’ (ἐναρίζω, killing someone to
take their ἔνᾰρα, ”spoils”), and the conjectural part is written with <ἐπι>. This means the
rest of the word lacks a spiritus, which is how this bug is found. We need to remove the <>
and join the two lines. The result should thus be

Ἄγε v3siia---ἄγω
με p-s---ma-ἐγώ
,u--------,
καὶ c--------καί
τότ’ d--------τότ
ἐπενάριξον v1saia---ἐπενάριξον
. u--------.

Another example is:

ξ d--------ἔξ
<u--------<
ίφει v3spia---ίφω
>u-------->

which clearly should simply be

ξίφει v3spia---ξίφει

An extra complicated case is Soph. Ant. 836

Καίτοι d--------καίτοι
φθιμένῃ v-sapmfn-φθιμένῃ
μέγ a-s---na-μέγ
<d--------<
α p-p---na-α
κ>ἀκοῦσαι v--ana---κ>ἀκοῦω

To reiterate, three salient problems that depended on the sentence order of the context
of tokenization and that would have to be addressed to prevent problems downstream were:

• elided tokens whose elision signs have become separate tokens,
• words with intra-word line breaks which have been triply tokenized: first part of the

word + en dash + last part,
• words with parts that are conjectures in angular brackets13

2.1.2 Unicode
A general problem for any digital treatment of Ancient Greek is the representation of the
staggeringly rich set of Unicode characters. For modern Greek you are pretty much set with
characters from the Greek and Coptic code chart, covering the subspace 0370–03FF.

With Ancient Greek, however, matters quickly get entangled. To begin with, we have
Greek Extended in subspace 0370–03FF, which is supposed to be the go-to subspace for
polytonic Greek. However, Unicode characters with diacritics can always be reached in two

13My functions solving these three situations are found at https://github.com/Urdatorn/greek-macronizer/
blob/master/prepare_tokens/fix_elision_and_line_break.py.

10

https://github.com/Urdatorn/greek-macronizer/blob/master/prepare_tokens/fix_elision_and_line_break.py
https://github.com/Urdatorn/greek-macronizer/blob/master/prepare_tokens/fix_elision_and_line_break.py

ways: by pre-composed characters (say ᾧ) or with composition of base character + diacritics
(e.g. ῾+ ῀+ ι + ω). The funny thing is that the diacritics needed for polytonic Greek are all
in a third subspace, Combining Diacritical Marks, ranging between 0300–036F.

Unicode character naming convention is slightly idiosyncratic (it tends to use Modern
Greek linguistic vocabulary that may not be the most current in Anglophone philology) and
calls for a quick exposition before we continue:

• acute = ’oxia’ for polytonic and ’tonos’ for monotonic (only the small ones overlap with
polytonic)

• grave = ’varia’ (this is downright obfuscating)
• circumflex = ’perispomeni’
• spīritūs asperī and lēnēs = ’psili’ and ’dasia’
• iota adscriptum = ’prosgegrammeni’
• iota subscriptum = ’ypogegrammeni’
• Greek diaeresis/trema = ’dialytika’ in precomposed characters, although on its own the

diacritic is called ’combining diaeresis’)
• longum = ’macron’
• breve = ’vrachy’

Now to the problems. Unaccented Greek base characters are all from Greek and Coptic,
and there are no base characters in Greek Extended, so that’s fine. The first problem is that
Modern Greek does have two series of accented vowels, the precomposed tonos characters
plus the precomposed tonos and dialytika characters (e.g. ΐ), that in most but not necessarily
all fonts look identical to the polytonic oxia characters, and that nonetheless should be
functionally equivalent to them. This clearly makes any text search and string matching
unreliable, as one καί with tonos could end up not registering as identical to a καί with oxia.
Confusingly, expert sources do not all agree on which of the two should be the “normal”. In his
handbook article, Taubner implicitly endorses oxia-to-tonos normalization (Tauber 2019, p.
154), whereas the CLTK (with which the same Taubner has been closely associated) supplies
a normalization function that defaults to tonos-to-oxia normalization.

I think the matter is easy to settle from a pragmatic point of view. Polytonic keyboards
tend to enter acutes as tonos characters, and all corpora I’ve checked, including the tokeniza-
tion corpus dealt with in this thesis, have tonos acutes. CLTK seems to have understood the
complications, and provide a “backwards” options for their acute normalization, which I’ve
used on the corpus to be on the safe side.

Differences between precomposed and composed characters may likewise present problems,
and not only for string matching. In general, if you enter accented text through a polytonic
keyboard, you will probably get precomposed characters (that is, from the 1Fxx subspace)
rather than compositions. The Unicode FAQ for Greek (Unicode 2024a) has the following to
say:

Also, if you examine the code charts for the U+1F00..U+1FFF block of “ex-
tended” Greek carefully, you will note that all the polytonic Greek pre-composed
characters have canonical mappings. This means that they are canonically equiv-
alent to sequences consisting of the basic letters plus sequences of the basic letters
plus combining voicing and accent marks. Any properly constructed Unicode
search operation should treat canonical equivalents the same, so it should not
matter whether one specifies a target match in terms of the pre-composed char-
acters or in terms of the sequences of basic letters and combining marks. This
situation for Greek is no different from the requirement for the Latin script that

11

a search for a pre-composed Latin letter and the same letter with a combining
accent mark produce the same results. [My emphasis]

One can’t but agree, but it’s wishful thinking, and if you program a Python function to
search for a precomposed string, it will at any rate certainly not match composed strings. The
solution is to normalize the corpus. In Unicode terms there are two possible normals, NFC
and NFD, “normal form composed” and “normal form decomposed” respectively. Luckily,
python provides a unicodedata.normalize(form, unistr) method, where ‘form’ is NFC or
NFD. Throughout my work flow, I have consistently and repeatedly used NFC normalization,
avoiding problems pertaining to the divergent formattings of the source corpora for macron
crawling.

It needs to be added, that certain combined characters simply do not have a Unicode
points. Specifically, all accented polytonic characters with macron or vrachy are irreducibly
decomposed, that is, they cannot be represented using less than two points. In the Wik-
tionary corpus, there are no less than 62 (!) unique decomposed combined characters with
macronization.14 The problem that arises here has to do with determining string length and
the position of a given character within a string. For unless told otherwise, from the perspec-
tive of Python each Unicode escape code (e.g. 0370) counts as a character. Hence, the final
α in Αἰγυπτῐ ᾱ́15 risks being counted as the ninth character of the string. We will return to
the precise solution of this problem in the chapter on macron crawling.

2.1.3 Sieving Tokens
My sieving pipeline aimed to create a tab-separated values (.tsv) file with columns token, tag
and lemma, containing only well-formed and well-formatted tokens containing truly undecided
dichrona, to serve as a maximally short wish list for the coming data crawling. It contained
ten subscripts:

1. Removing punctuation
2. Splitting double tokens with final sigma at non-final positions
3. Removing duplicates
4. Normalizing delimiters
5. Removing lines with first column empty of Greek
6. Adding oxytone versions of every barytone token
7. Sorting unicode alphabetically with pyuca
8. Filtering truly undecided dichrona
9. Removing the last accent of words with two accents

10. Removing words lacking obligatory spīritūs
14See https://github.com/Urdatorn/greek-macronizer/blob/master/crawl_wiktionary/macrons_map.py
15Yes, the Greek font I’m typesetting this document with is not a “smart font” like New Athena Unicode,

which “contains OpenType ligature instructions that allow the display of well-formed precomposed glyphs in
response to input of two or more Unicode code points. This capability allows the use of combinations like alpha
with macron and acute and smooth breathing depending only on official Unicode code points.” (Classical Studies
2021) So it will indeed display on the typeset page like Python interprets it, and not like I see it when I type
it, which is as an iota with both a breve and an acute accent.

12

https://github.com/Urdatorn/greek-macronizer/blob/master/crawl_wiktionary/macrons_map.py

The division into subscripts was partly practical, as each script could be tested in isolation
until yielding the desired bug-free results. But it was also due to the fact that I could run
them all from a master script, with a single in- and output, enabling the whole process to be
easily reiterated, no matter how early in the chain changes were made or bugs found. For
example, most of the pipeline was already written by the time I realized the need to perform
the fixes outlined in the section on mending the tokens.

1, 2 and 9 perform token mending that does not rely on the original sentence context.
For 2, I rely on the fact that since ς should only appear at word end, its presence inside a
token indicates that two tokens have merged and should be split into two separate lines. In
9, I standardize tokens that were originally followed by enclitics, as double-accented forms
will be searched for in vain in the large context-free dichrona corpora like Wiktionary.

3, 5 and 10 removes lines that either could not be saved by the mending or simply did
not contain any Greek.

4 double-checks that all of the tab stops are well-formatted.
6 is included because oxytone tokens are way more likely to be found in the crawled

corpora (cf. 9) and barytone tokens can then easily be made to algorithmically inherit the
macrons from their oxytone brothers.

7 is of some special interest. As anyone trying their hands on Greek lexigcography knows,
the precise alphabetic ordering of diacritics is far from trivial. For example, how are ἆ, ᾂ and
ἅ to be ordered? Or what about α and ᾱ? Python has no native support for this task. Luckily,
James Tauber has ported the Unicode Collation Algorithm16 to python as the package pyuca
(Tauber 2017). While the UCA is certainly not the be-all and end-all of Ancient Greek string
ordering, it was enough to render my files more readable, and crucially to enable me at a
later stage to at a glance see the progress of macronization of a given root.

The most subtle and most important work went into 8, however. The filtering has two
main components: (i) filtering for tokens with at least one “true” dichronon (not every α,
ι, υ is born equal!), and (ii) filtering for certain combinations of accentual word class and
dichronon placement.

What is a “true” dichronon? It is dichronon whose length is not immediately and me-
chanically given by its diacritics or adjacent vowels. For α, ι, υ with circumflex are always
long, as are α, υ with iota subscript or iota adscript. Regarding diphthongs, they are always
constituent of metrically heavy syllables, regardless of the length of the constituing vowels,
so for our intents and purposes α, ι, υ need not be disambiguated.17

However, programmatically it’s easier to say what a dichronon is, rather than what it is
not:
DICHRONA = {
CAPITALS
"\u1f08", # Ἀ Greek Capital Letter Alpha with Psili
"\u1f38", # Ἰ Greek Capital Letter Iota with Psili

"\u1f0c", # Ἄ Greek Capital Letter Alpha with Psili and Oxia
"\u1f3c", # Ἴ Greek Capital Letter Iota with Psili and Oxia

"\u1f0a", # Ἂ Greek Capital Letter Alpha with Psili and Varia
"\u1f3a", # Ἲ Greek Capital Letter Iota with Psili and Varia

"\u1f09", # Ἁ Greek Capital Letter Alpha With Dasia

16See http://unicode.org/reports/tr10/
17If we were more interested in the reconstructed pronunciation than in metrics, we would have to distinguish

between long and short diphthongs, and furthermore decide for long diphthongs the length of their “phthongs”
(arguably, short diphthongs ought have short constituents).

13

"\u1f39", # Ἱ Greek Capital Letter Iota With Dasia
"\u1f59", # Ὑ Greek Capital Letter Upsilon With Dasia

"\u1f0d", # Ἅ Greek Capital Letter Alpha With Dasia And Oxia
"\u1f3d", # Ἵ Greek Capital Letter Iota With Dasia And Oxia
"\u1f5d", # Ὕ Greek Capital Letter Upsilon With Dasia And Oxia

"\u1f0b", # Ἃ Greek Capital Letter Alpha With Dasia And Varia
"\u1f3b", # Ἳ Greek Capital Letter Iota With Dasia And Varia
"\u1f5b", # Ὓ Greek Capital Letter Upsilon With Dasia And Varia

LOWER-CASE (NB 3 overlapping tonos-oxia)
"\u03b1", # α Greek Small Letter Alpha
"\u03b9", # ι Greek Small Letter Iota
"\u03c5", # υ Greek Small Letter Upsilon

"\u03ac", # ά Greek Small Letter Alpha With Tonos
"\u03af", # ί Greek Small Letter Iota With Tonos
"\u03cd", # ύ Greek Small Letter Upsilon With Tonos

"\u1f71", # ά Greek Small Letter Alpha With Oxia
"\u1f77", # ί Greek Small Letter Iota With Oxia
"\u1f7b", # ύ Greek Small Letter Upsilon With Oxia

"\u1f70", # ὰ Greek Small Letter Alpha With Varia
"\u1f76", # ὶ Greek Small Letter Iota With Varia
"\u1f7a", # ὺ Greek Small Letter Upsilon With Varia

"\u1f00", # ἀ Greek Small Letter Alpha With Psili
"\u1f30", # ἰ Greek Small Letter Iota With Psili
"\u1f50", # ὐ Greek Small Letter Upsilon With Psili

"\u1f04", # ἄ Greek Small Letter Alpha With Psili And Oxia
"\u1f34", # ἴ Greek Small Letter Iota With Psili And Oxia
"\u1f54", # ὔ Greek Small Letter Upsilon With Psili And Oxia

"\u1f02", # ἂ Greek Small Letter Alpha With Psili And Varia
"\u1f32", # ἲ Greek Small Letter Iota With Psili And Varia
"\u1f52", # ὒ Greek Small Letter Upsilon With Psili And Varia

"\u1f01", # ἁ Greek Small Letter Alpha With Dasia
"\u1f31", # ἱ Greek Small Letter Iota With Dasia
"\u1f51", # ὑ Greek Small Letter Upsilon With Dasia

"\u1f05", # ἅ Greek Small Letter Alpha With Dasia And Oxia
"\u1f35", # ἵ Greek Small Letter Iota With Dasia And Oxia
"\u1f55", # ὕ Greek Small Letter Upsilon With Dasia And Oxia

"\u1f03", # ἃ Greek Small Letter Alpha With Dasia And Varia
"\u1f33", # ἳ Greek Small Letter Iota With Dasia And Varia
"\u1f53", # ὓ Greek Small Letter Upsilon With Dasia And Varia

DIAERESIS/TREMA/DIALYTIKA (NB 2 overlapping tonos-oxia)
"\u03ca", # ϊ Greek Small Letter Iota With Dialytika
"\u03cb", # ϋ Greek Small Letter Upsilon With Dialytika

"\u0390", # ΐ Greek Small Letter Iota With Dialytika And Tonos
"\u03b0", # ΰ Greek Small Letter Upsilon With Dialytika And Tonos

14

"\u1fd3", # ΐ Greek Small Letter Iota With Dialytika And Oxia; my addition
"\u1fe3", # ΰ Greek Small Letter Iota With Dialytika And Oxia; my addition

"\u1fd2", # ῒ Greek Small Letter Iota With Dialytika And Varia
"\u1fe2", # ῢ Greek Small Letter Upsilon With Dialytika And Varia
}

It is worthwhile to include this complete Python dictionary, because it forms the most
important and the most imported part of my code, and it exemplifies several points touched
on in the section on Unicode. It is clear that if a token contains any of these characters, it
requires at least some effort to settle its metrical word shape.

To understand the second filter, we need to note all of the logical relationships between the
five Greek accentual word classes18 and the length of the ultima, given that it is a dichronon:

• OXYTONE implies nothing without context (cf. ἄν vs. ἄν = ἐάν)
• PAROXYTONE with ≥ 3 syllables does NOT imply long vowel in ultima, because not

all accents are recessive. However, paroxytone + long penultima implies short
ultima as per the logical contraposition of the so-called σωτῆρᾰ-rule.19.

• PROPAROXYTONE implies short ultima (an exception would have been the
πόλις declination’s εως, had it ended on a dichronon).

• PERISPOMENON implies long ultima (strictly, this is irrelevant, since I do not class
α, ι, υ with circumflex as true dichrona).

• PROPERISPOMENON implies short ultima.

I have boldfaced the three cases where we actually get valuable new disambiguating infor-
mation from the accentual word class, and I chose to formalize the former two of them to act
as the second filter, to make the amount of tokens crawled more manageable. Simply put, we
should not go through the hassle of searching external sources of macrons for words whose
only true dichronon can easily be disambiguated based on their accentual word class alone.
We will return to all three of these rules, when we go through how they were implemented
to macronize the ultimas of words that survived the filtering because of containing more
dichrona than just in the ultima.

The formalization required a series of dependent steps. Using the syllabifier extracted from
Eric Cullhed’s Dionysus Recomposed and making sets of all relevant acutes and circimflexes,
I defined properispomenon and proparoxytone:

1 def properispomenon(word):
2 '''
3 >> properispomenonὗσον('')
4 >> True
5 '''
6 list_of_syllables = syllabifier(word)
7 if len(list_of_syllables) >= 2:
8 penultima = list_of_syllables[-2]
9 circumflexes = r'ᾶῆῖῦῶἇἆἦἧἶἷὖὗὦὧἦἧἆἇὧὦᾆᾇᾷᾖᾗᾦᾧῷῇ[]'

18Oxytone means acute on the ultima, paroxytone acute on the penultima, proparoxytone acute on the ante-
penultima, perispomenon circumflex on the ultima and properispomenon circumflex on the penultimate. When
a final acute has been changed into a grave, we sometimes talk of the word as belonging to a sixth ‘barytone’
word class, which is however not lexical.

19The rule (CGCG 21.11) says that if the accent falls on a long penultimate and the ultima is short, the
accent is a circumflex rather than an acute. In contraposition (viz. the negation of the apodosis implies the
negation of the protasis), we get: if the accent is an acute rather than a circumflex, either the accent falls on a
short penultimate or the ultima is long. Hence if we restrain ourselves to cases with long penultimate, acute on
penultimate directly implies long ultima. Phew!

15

10 if re.search(circumflexes, penultima):
11 return True
12 else:
13 return False
14 else:
15 return False
16
17 def proparoxytone(word):
18 '''
19 >> proparoxytoneποτιδέρκομαι('')
20 >> True
21 '''
22 list_of_syllables = syllabifier(word)
23 if len(list_of_syllables) >= 3:
24 antepenultima = list_of_syllables[-3]
25 acutes = r'άέήόίύώἄἅἔἕὄὅἤἥἴἵὔὕὤὥΐΰᾄᾅᾴᾔᾕῄᾤᾥῴ[]'
26 if re.search(acutes, antepenultima):
27 return True
28 else:
29 return False
30 else:
31 return False

The first function to filter out tokens with could therefore be defined by the following
criteria (and mutatis mutandis for the second one concerning proparoxytones:

1. The entire string is recognized by word_with_real_dichrona.
2. The accent type of the string is classified as properispomenon.
3. The ultima of the string is recognized by word_with_real_dichrona.
4. The part of the string before the ultima is NOT recognized by

word_with_real_dichrona.

2.2 Crawling for Macrons
The sieving pipeline took the list of tokens from 300 595 lines to 41 825 (with 32 540 unique
tokens), as 94% of the tokens were either punctuation or tokenization artifacts, or contained
no true dichrona, or had its only dichronon as an ultima easily given by the rules of prosody.

I now had a feasibly-sized wish list of dichrona. So where does one go to find disambiguated
dichrona? The first answer that comes to mind is probably the dictionary. As a substantial
dictionary explicitly aiming to cover the entire vocabulary of tragedy, LSJ is a natural choice.
It also happens, as we will see below, that one free online version, LSJ.gr, provides a website
with features making it particularly ripe for crawling.

However, a lexicon like LSJ will as a rule only provide the vowel lengths of lemmas (i.e.
the uninflected lexical search words) and, occasionally, their principal parts.

This is where Wiktionary comes in. The unsung king of digital morphological table
carpentry, Wiktionary importantly provide ample support for and encourages the markup of
vowel lengths in every single morphological form, and the website is easy to crawl. Wiktionary
was the back-bone of the operation, and would come to provide more than one third of the
crawled vowel lengths.

The second type of source is a corpus of verse with the metrics marked up. With every
syllable marked as long or short, it is immediately possible to macronize all open syllables.
Luckily, David Chamberlain has created precisely the right kind of corpus on hypotactic.com.
(Chamberlain 2023)

16

LSJ.gr

2.2.1 Wiktionary
Underneath its collaborative surface, the bulk of Wiktionary’s Ancient Greek tables is gener-
ated by an ingenious set of code called grc-conj written in the Lua programming language by
a single individual, an anonymous woman going by the username ObsequiousNewt.20 (Obse-
quiousNewt 2017)

Because of the structured pages, Wiktionary was easy to crawl. However, because of the
smart fonts used on the site, all macra and brevia are presented as diacritics in the text, as
Unicode, which meant that they couldn’t directly be compared to my prepared list of desired
tokens.

As mentioned above, in my crawled list of macronized tokens there are sixty-two different
combinations of polytonic characters with a macron or breve. My goal was i) to strip the vowel
length diacritics off the polytonic characters, all without loosing their other diacritics (the
accents, breathings, subscripts and dialytika etc. vertically stacked on top of the macronized
base) and ii) reformat the information contained in the diacritics as a stand-alone macron
column in the tsv.

Following Johan Winge’s latin-macronizer, I chose to represent a macron as an underscore
‘_’ and a breve as a caret ‘^’, but unlike his inline markup my underscores and carets are
followed by numerals indicating the ordinal position of the vowel they refer to in the token
string. For example, ‘^1’ is intended to be read as “with a breve on the first letter”, “_1^3^5”
as “with a macron on the first letter, and breves on the third and fifth letters”.

Practically, then, I needed to take a line such as

νεᾱνῐᾱ́ς

and turn it into the two-column

νεανίας _3^5_6

As mentioned earlier, after a lot of fruitless attempts at smart text searches, I realized
that by far the safest solution was to brute-force the problem with an explicit dictionary.
So I made a script compiling all unique characters in the 400 000 line crawled corpus at my
command, and manually specified how each should be stripped, as in the example below:

'\u1FD0\u0301': 'ί', # ῐ́
'\u1FD0\u0300': 'ὶ', # ῐ̀
'\u1FD0\u0308': 'ϊ', # ῐ̈
'\u1FD1\u0313': 'ἰ', # ῑ̓

There is one particularly subtle aspect of the dictionary: for full compatibility, the twelve
macronized base letters ᾰᾸᾱᾹῐῘῑῙῠῨῡῩ with macron or vrachy as only diacritic had to be
included in both precomposed and composed versions. To make this explicit, and in general
to increase the future usability of this solution as a sort of quarry for macronized Unicode, the
left-hand entries are given as explicit Unicode escape sequences, with their graphs indicated
in the comment (I included their Unicode name as well, but it makes the comment to long
to typeset here).

As for goal ii), to reformat the information that is being stripped, it presented its own
challenges.

20grc-decl is the analogous code for nouns. See https://en.wiktionary.org/wiki/User:ObsequiousNewt for
ObsequiousNewt’s userpage and https://en.wiktionary.org/wiki/Module_talk:grc-conj for a page showing
the interactions of other later contributors.

17

https://en.wiktionary.org/wiki/User:ObsequiousNewt
https://en.wiktionary.org/wiki/Module_talk:grc-conj

The main problem here was that diacritics often make Python count an extra character
(as discussed in an earlier section). The solution was to leverage the CLTK function base
to search for the completely stripped base character in a created base alphabet set, and
only increment the character position counter for characters found in that set (free-floating
diacritics do not have such a base, and will thus be skipped):

1 def process_word(word):
2 modifications = []
3 i = 1 # Initialize character position counter
4 for char in word:
5 if re.search(base_alphabet, base(char)):
6 char_length = length(char)
7 if char_length == LONG:
8 modifications.append(f"_{i}")
9 elif char_length == SHORT:

10 modifications.append(f"^{i}")
11 i += 1
12
13 processed_word = strip_length_string(word)
14 return processed_word, modifications

As we’ll return to in the chapter on collation, a staggering 14 731 lines of our tokens were
eventually macronized when collated with the data from Wiktionary.

2.2.2 Hypotactic
Hypotactic is a Herculean effort, and a (probably lifelong) completely unfunded work-in-
progress. I will not try to paraphrase Chamberlain’s own words in the introduction to his
scansion repository:

This project arose from multiple years of failed experimentation with algorithms
(my own and others’; no pun intended) for teaching a computer to scan ancient
verse. The reason this was doomed to fail is explained here [...]. Eventually the
realization hit that they’re not writing any more ancient verse, so why not just
scan it all and publish it for all to use? (Chamberlain 2023, Original hyperlink
but my emphasis)

“Please take the data and see what you can do with it”, says Chamberlain further down
on the same page. Your will, my command! With 3 148 lines of our tokens macronized in
the end, Hypotactic proved an irreplaceable supplement to Wiktionary.

Hypotactic contains a lot of information. Here is the first line of the Argonautica,
ἀρχόμενος σέο, Φοῖβε, παλαιγενέων κλέα φωτῶν, in Chamberlain’s HTML:

1 <div class="line hexameter"
2 data-number="1"
3 data-metre="hexameter">
4
5 ἀρ
6 χό
7 με
8 νος
9

10
11
12 σέ
13 ο,
14

18

https://xkcd.com/1002/

15
16
17 Φοῖ
18 βε,
19
20
21
22 πα
23 λαι
24 γε
25 νέ
26 ων
27
28
29
30 κλέ
31 α
32
33
34
35 φω
36 τῶν
37
38
39 </div>

Beyond syllable weights, meter (hexameter) and exact syllable lengths are provided. For
certain texts, even more dimensions of analysis have been included in the markup.

All in all, the crawled Greek corpus is 60 MB’s of text across 88 works in their separate
HTML files. Importantly, it includes three tragedies by Aechylus (out of his extant seven),
which means that all dichrona in open syllables from these works have been disambiguated.

My work on Hypotactic proved the most computationally intensive of the entire project,
which implied a level of care for efficiency not necessary. When I tried to extract the vowel
lengths immediately, the process was interminably long, and I had to break it down into
steps, represented by the following scripts:

1. Crawling HTMLs:
crawl_hypotactic/crawl_hypotactic.py

2. Creating huge SQL .db:
crawl_hypotactic/crawl_hypotactic_preprocessing.py

3. Querying the .db:
crawl_hypotactic/crawl_hypotactic_db.py

The first step, which I saw as “preprocessing”, consisted in porting the information con-
tained in the HTML files to an SQL, a format that not only can be read much faster but also
reliably allows multithreading with the Python package concurrent.futures. Multithreading
here means that the script can query information regarding several tokens at the same time,
efficiently slicing processing time in half or more. The SQL database metrical_patterns.db
consists of 1 456 400 (sic) pairs of tokens and metrical patterns, presented as in table 1. The
script has simply entered underscores and carets after syllables depending on whether they
were marked as long or short in the HTMLs.

With an efficient database and multithreading, I could start querying, using crawl_hypotactic/crawl_hypotactic_preprocessing.py.
The script has a number of notable subtleties: firstly, as we have noted in the epistemological

19

No. Greek Transcription
1 ὦ ὦ_
2 παῖ, παῖ,_
3 τέλος τέ^,λος_
4 μὲν μὲν_
5 Ζεὺς Ζεὺς_

Table 1: First lines of metrical_patterns.db

section, poets cannot be trusted to provide canonical and consistent vowel lengths. Their
job is to provide musical meters and not to be pedagogical or to respect etymology (leave
that to Cratylus!). This means that only tokens that have the same vowel lengths in all of
their appearances in the database should be used to disambiguate dichrona. Secondly we
now wanted to filter out only tokens appearing in our wishlist.

The resulting was a list of 6 592 tokens, with at least one macron or breve each in a
column of macrons using the same format as for Wiktionary.

2.2.3 Ifthimos
With merely 1 915 tokens macronized, the crawling of Ifthimos barely justified the fact that
it was the most complicated and time-consuming crawl, taking me several weeks of dedicated
work. However, Ifthimos is an interesting package, and if my work at all highlights its
existence and potential, it will have been worthwhile.

Written in Ruby by classics enthusiast and professional physicist Ben Crowell, Ifthimos
has a curious relationship to the internet. Launched on Github and advertised in a post
by the author on the Ancient Greek subforum on Reddit less than a year ago, the package
was subsequently moved from Github to less-known version control service Bitbucket, citing
concerns about the ethics of Github, and the forum post was deleted by the author. I cannot
speculate as to why Crowell has made the software less easy to find, but its by-now extreme
online obscurity makes its mention here all the more worthwhile.

Ifthimos is harder to deploy than other packages I have mentioned and used. It is not
included in RubyGems, the standard terminal package delivery software for Ruby, and de-
pends on three other Ruby packages by Crowell, tinycus, genos and lemming, out of which
only one is a gem in RubyGems. All of these packages hence have to be cloned manually
from Bitbucket, with all the subtle file structure and import issues this entails. With that in
mind, this exposition will be slightly more technical than my others.

Here is Crowell’s own description, from the online docs (i.e. README.md), of how Ifthimos
handles vowel length (my emphasis):

The constructor tries to infer the lengths of as many vowels as possible, and
for example if the part of speech data have been supplied, then it will know the
correct lengths for any inflectional endings. Any vowel lengths that are unknown
are recorded as unknown. If it’s of interest, vowel lengths can also be set in the
input string by supplying macronized characters. When the object is rendered into
a string, vowel length is not shown explicitly by default. Facilities are supplied
for showing it in several different human-readable ways, using the methods

1 puts w.to_s # ἄγνυμι
2 puts w.stringify # ἄγνυμι \n {}
3 puts w.describe # α- γνυ- μι with acute at 0
4 puts w.inspect # ἄγνυμι (ῡ)

20

In the following example, the given part-of-speech (POS) information allows the
library to infer by pattern matching that the upsilon in the inflectional ending is
long. The inspect method returns a string representation of the word followed in
parentheses by an upsilon with a macron, showing that the upsilon is long.

1 require 'ifthimos'
2 genos = GreekGenos.new('classical')
3 w = Ifthimos::Mows.new(
4 'ἄγνυμι',genos,[],
5 pos:Ifthimos::Pos.new('v1spia---'))
6 print w.inspect # ἄγνυμι>> (ῡ)

Despite the promising words about macronizing as much as possible, the package does not
seem to know any roots or augments, and only macronized endings in my corpus. A further
caveat is that the package does not include any brevia.

My first step was to create a script in Ruby, to call the macronizing abilities of Ifthimos
and serve as something that I could later call from outside Ruby:

1 require './tinycus-1.1.0/tinycus'
2 require './ifthimos'
3
4 token = ARGV[0]
5 pos = ARGV[1]
6
7 def ifthimos_macronizer(token, pos)
8 # token = ἄγνυμι''
9 # pos = 'v1spia---'

10 # ifthimos_macronizer(token, pos)
11 # => ῡ
12 genos = GreekGenos.new('classical')
13 mows = Ifthimos::Mows.new(
14 token, genos, [],
15 pos: Ifthimos::Pos.new(pos))
16 inspection = mows.inspect
17
18 # Check if the inspection ends with parentheses
19 # and extract the content
20 match = inspection.match(/\((.*?)\)$/)
21
22 if match
23 puts match[1]
24 else
25 puts "No match"
26 end
27 end
28
29 ifthimos_macronizer(token, pos)

As the reader may have glimpsed from the code, I took parentheses to herald the presence
of a macron in the return. To make this run in a subfolder within my main greek-macronizer
working directory, I relativized all relevant imports in the Ifthimos files needed.

I was now ready to write a Python interface using the package subprocess. Once again,
the process was too slow to finish, so I ended up adapting the code to use multithreading.
The core functionality is the following:

1 ifthimos_folder_path = 'ifthimos'
2 # Adjust the command to call the Ruby script from within its directory
3 command = ['ruby', 'macronize.rb', token, pos]

21

4 # Use the cwd parameter to set the current working directory to the ifthimos subfolder
5 result = subprocess.run(command, capture_output=True, text=True, cwd=ifthimos_folder_path)

I could subsequently query Ifthimos for each of the tokens in the main wishlist, saving
them as a TSV.

2.2.4 LSJ
Adding macra to a mere 181 lines, LSJ was not necessary to crawl from a pragmatic viewpoint.
However, methodologically it made a lot of sense to do it, and the way the particular website
https://LSJ.gr is designed, made it easy. Why? Because the lemma of each entry has been
extracted from the dictionary text and presented in an HTML-wise easily identifiable table
at the head of the page, whose upper left entry includes macra and brevia, in case they are
mentioned in the entry. The process of reformatting the crawled macra was identical to the
Wiktionary case.

2.3 Conscientious Collation
All in all, 27 607 macra (including breves) were crawled. Figure 1 shows the number of tokens
containing at least one instance of each respective source.

Figure 1: Macronized lines by provenience

However, all these macra were distributed among four different lists. Now, the goal was
to create a single five-column TSV list, where beyond tokens, tags and lemmata, macra and
brevia from all four sources would enter into a fourth column, with the sources listed in a
fifth column.

The collation of the macron column had to be done orderly, though. As basic desiderata,
I decided on the following:

• New macra (i.e. underscore/caret + one or two integers) should never overwrite existing
ones

• A new macron is always inserted in the correct order among the existing ones
• The collation functions must be able to correctly handle inserting any number of new

macra into a field with any number of macra, with the output containing the old macra
plus those of the new macra that did not contradict the existing ones.

22

https://LSJ.gr

Practically, avoiding overwriting boils down to checking whether the integer part of a
macron already exists before it is collated. To this end, I wrote a function that works like
this:

1 >>> ordinal_in_existing('^1_2_13', '^13')
2 >>> True

Since the position counter of the new macron (13) matches one of the positions (1, 2, 13)
of the existing macra, it returns True. Building on that function, I wrote a function that
inserts a new macron in the correct order among existing ones, working in the following way:

1 >>> insert_macron_in_order('_1^3^7', '^2')
2 >>> '_1^2^3^7'
3 >>> insert_macron_in_order('_1', '')
4 >>> '_1'
5 >>> insert_macron_in_order('', '^5')
6 >>> '^5'

With the case of a single new macron solved, I made a function handling any type of
complex updating of macron fields. Even though its parts had been unit tested (as all
functions I make), the testing of this particular function demanded special attention. For
even the slightest error in the collation algorithm could potentially corrupt and undo all the
meticulous care that had gone into the sourcing of the data. The following test set aimed to
represent all important case classes:

1 def test_collate_macrons():
2 tests = [
3 # Test cases: (existing_macrons, new_macrons, expected_result)
4 ("", "^2", "^2", "Empty existing macrons"),
5 ("^1_3^7", "", "^1_3^7", "Empty new macrons"),
6 ("^1_3^7", "^2", "^1^2_3^7", "Single new macron addition"),
7 ("_1^3^7", "^2_5", "_1^2^3_5^7", "Multiple new macrons addition"),
8 ("^1_3^7", "^3", "^1_3^7", "Redundant macron addition"),
9 ("^1_3^7", "^5^2", "^1^2_3^5^7", "Unordered multiple new macrons"),

10 ("_1^3^7", "_4^2", "_1^2^3_4^7", "Complex case with all types"),
11 ("", "^1^2^3", "^1^2^3", "All new macrons, none existing")
12]

The usefulness of this robust collation code can not be overstated. Not only did it collate
the four crawled sources, but it was imported and used anytime an algorithmic approach was
used to create new macra, which is the subject of the next section. Indeed, given this code
and the macron formatting code outlined previously, anyone who has a list of macronized
tokens can safely and easily integrate it into my list (or vice versa).

2.4 Algorithmic Approaches
In this section I will outline some possible ways of generalizing the data collected in the
previous chapter. I have no intention of being exhaustive; there are innumerable ways to go
about and, as will be discussed, my hands are slightly tied, given that morpheme boundaries
are not marked up in the tokens.

However, before we delve into grammatically knottier algorithms, three “easy wins” ought
to be discussed. As a first measure, the prosodic rules (including the σωτῆρᾰ-rule) leveraged
to filter for “true” dichrona in the sieving pipeline returned. A large number of tokens have
dichrona both in the ultima and elsewhere, and these needed their ultimae macronized. That
was the first easy win.

Remember that I made oxytone copies of all barytones early on, because I knew that
none of the sources would string match barytones? The second easy win was to let all those

23

barytones inherit the macra (if there were any) of their oxytone twins, yielding many freshly
macronized lines.

The third maneuver can perhaps not be called “easy”, except for the fact that it required
nothing over and above what was already in the token TSV.

For pairs of tokens

i) each with >2 syllables

ii) sharing lemma

iii) differing only with regard to the ultima and

iv) at least one of which has at least one macron not referring to a vowel in the last two
syllables,

I wanted to generalize the macrons so that given, say,

μεγίστας a-p---fa-μέγας _7 ifthimos
μέγιστε a-s---mvs μέγας
μεγίστη a-s---fn-μέγας
μεγίστην a-s---fas μέγας
μεγίστης a-s---fgs μέγας
μέγιστον a-s---nas μέγας ^4 wiktionary

all lines would inherit the breve iota from the last line. In other words, in every qualifying
pair the token with more macrons should bequeath whichever ones of them the one with
fewer does not already have. The gist of a function realizing such a maneuver is captured by
the following return statement (the variable names of which should be self-explanatory):

1 return len(token_1) > 2 and len(token_2) > 2 and except_ultima1 and except_ultima2 and lemma_1 ==
lemma_2 and only_bases(except_ultima1) == only_bases(except_ultima2)

However, that is easier said than done (or rather, easier written than run), since processing
all possible pairs means processing a number of cases equal to the square of the number of
lines. Since the number of lines is around 40 000, the number of pairs to be processed is in
the order of magnitude of 1.6 × 109! Realizing that the processing would likely take longer
than what was left of the semester, I once more turned to multithreading.

Having settled on a four-thread set-up (fitting my basic M1 processor), with each thread
processing one fourth of the list, the Python script ran for more than two days straight
before finishing. The result was inspiring: the source field of several thousand lines now
contains ‘cognate’, indicating that they have been macronized by this script. The potential
for improvement and extension of the algorithm is great, and further work along the same
lines will be well worth it. Ideas for further experimentation include letting some token pairs
that are highly alike share macrons even though they do not share lemma, given the many
errors of lemmatization, and letting elided tokens count their elision character as an extra
syllable.

With the “easy part” done, lets move on to the main algorithmic topic, morphology.

2.4.1 Morphology
Nominal Forms The easiest morphological pattern to formalize in unelided Greek nouns
and verbs is the ending, since any final dichronon will regularly belong to the ending. This
also means that the endings are in general well-handled on Wiktionary, and the code here

24

merely serves to fill in a few holes (not more than five hundred of the tokens passing the
functions developed below had not already been macronized by the sources). I will restrict
myself to nominal forms, and specifically to those found in the table of endings on page 38
in CGCG.

The first step is to try to express the information regarding dichrona contained in the
table in words, as compact as possible, here divided by declension:

• 1D: Nom. and acc. and voc. sing. can be either, depending on whether or not it comes
from ionian -η. Tricky...
Acc. pl. => long -ας; however acc. pl. fem. of 3D are short: so if lemma is clearly
1D, ending is long.

• 2D: Nom. and acc. pl. (neut.): => short α (the only dichronon; Same as neuter
pl. 3D.)

• 3D: Dat. sing. => short ι (all datives on iota are short) Acc. sing. (masc.) =>
short α Nom. and acc. pl. (neutre) => short α, i.e. if noun is masc. or neutre
and ends on -α, that α is short21 Dat pl: short ι; see dat sing. Acc. pl. (masc) =>
short α. Cf. 1D acc. pl.

After further abstraction, this summary yields the following three fully generalizable rules
for use in functions acting on our token dictionary; note that in stating restrictions on tags
I use so-called regular expressions, where carets and dollar signs indicate string beginnings
and ends, dots are wildcards and square brackets are used where there are multiple options
for a single character:

1. for tokens with tag meaning “acc. pl. fem.”

(^n.p...fa.$)

and lemma ending with -η or -α, ending -ας is long

2. for tokens with tag meaning “masc. and neutre nouns”

(^n.....[mn]..$)

ending -α is short regardless of case

3. for datives

(^n......d.$)

ending -ι is short

The third and final step is to formalize these rules as three Python functions. All the
auxiliary functions referred to are imported from earlier scripts, and their names should be
self-explanatory:

21Note that some dual forms (1D on -ης) can be masculine on long -α, e.g. τὼ προφήτᾱ, ὁπλῑτ́ᾱ. Probably
hyper rare or inexistent in the corpus and not the case for 2D/3D and the most common masc. duals like χεροῖν,
χεῖρε.

25

1 def long_fem_alpha(token, tag, lemma):
2 tag_pattern_acc = re.compile(r'^[na].p...fa.$')
3 tag_pattern_gen = re.compile(r'^[na].s...fg.$')
4
5 base_token = only_bases(token)
6 base_lemma = only_bases(lemma)
7 endings = ('η', 'α', 'ος') # ος'' is to allow fem adj of 2D
8
9 if base_token.endswith('ας') and (tag_pattern_acc.match(tag) or tag_pattern_gen.match(tag))

and base_lemma.endswith(endings):
10 macron = f"_{ordinal_last_vowel(token)}"
11 return macron
12
13 return None

1 def short_masc_neut_alpha(token, tag):
2 tag_pattern = re.compile(r'^n.....[mn]..$')
3
4 base_form = only_bases(token)
5
6 if base_form.endswith('α') and tag_pattern.match(tag):
7 last_vowel_position = ordinal_last_vowel(token)
8 breve = f"^{last_vowel_position}"
9 return breve

10
11 return None

1 def short_dat(token, tag):
2 '''
3 Avoiding brevizing the iota of e.g. ἁβροσύνηι
4 '''
5 tag_pattern = re.compile(r'^n......d.$')
6 base_form = only_bases(token)
7
8 if base_form.endswith('ι') and tag_pattern.match(tag):
9 # Find the position of the last vowel

10 last_vowel_position = ordinal_last_vowel(base_form)
11
12 # Check if the last ι'' is part of a diphthong or has adscriptum
13 last_iota_index = base_form.rfind('ι')
14 prev_pair = base_form[last_iota_index - 1: last_iota_index + 1] if last_iota_index > 0

else ''
15 next_pair = base_form[last_iota_index: last_iota_index + 2] if last_iota_index < len(

base_form) - 1 else ''
16
17 if not (is_diphthong(prev_pair) or is_diphthong(next_pair) or has_iota_adscriptum(

prev_pair) or has_iota_adscriptum(next_pair)):
18 breve = f"^{last_vowel_position}"
19 return breve
20
21 return None

Prefixes Leaving endings behind, we simultaneously pass beyond the end of what we can
safely aim to exhaustively accomplish without first marking our tokens with the exact location
of certain morphological borders. These borders are most importantly the ones separating i)
the root from the rest of the word and ii) the ending from the stem. A special case of i) is
separating the prefix from the rest of the word (which practically means separating it from
either the root or some kind of augment). I chose to focus on this special case.

26

Why? Because it is clear that the following prefixes (not intended to be an exhaustive
list) and their numerous variants due to apocope, elision, aspiration and assimilation both
represent a considerable part of all open-syllable dichrona in the corpus and are comparatively
predictable to macronize:

1. ἀνα- (e.g., ἀναφέρω)22

2. ἀμφι- (e.g., ἀμφιθέατρον)

3. ἀντι- (e.g., ἀντίθεσις)

4. ἀπο- (e.g., ἀποθνῄσκω)

5. δια- (e.g., διάλογος)

6. δυσ- (e.g., δυστυχής)

7. ἐπι- (e.g., ἐπίθεσις)

8. κατα- (e.g., καταστροφή)

9. μετα- (e.g., μεταμόρφωσις)

10. παρα- (e.g., παραβολή)

11. περι- (e.g., περίμετρος)

12. συν- (e.g., συμπάθεια)

13. ὑπερ- (e.g., ὑπεράνω)

14. ὑπο- (e.g., ὑπόθεσις)

I ran a simple test on one of them, excluding all sandhi variations, using the function
1 def brevize_syn(word):
2 base_form = only_bases(word)
3 if base_form.startswith('συν'):
4 return '^2'
5 return None

which yielded 273 macra.
I do not know of any presently existing open-source algorithm that can mark-up prefixes,

nor perform other morphological cuts.23 However, as Eric Cullhed predicted in his description
of Makron, it quickly become clear to me that the future of morphological analysis will
most certainly be AI. But not without a caveat: even within a single family of models, like
ChatGPT, a quick test revealed that performance is strikingly model-dependent.

I made a test consisting of a stretch of one hundred entries taken from a prefix-heavy
portion of my tokens list, of which the following will give a good sense, with the ampersand
(&) indicating the “cut”:

22This is perhaps the trickiest, because in its elided form ἀνα coincides with the euphonic form of alpha
privativum. Alpha privativum is among the naughtier Greek prefixes, as it is often short, but also often long
(e.g. ἀθ̄άνατος).

23I tried and investigated Tauber 2020 in detail, but came to realize that it basically only supported lexical
(uninflected) forms.

27

ἀνδρῶνας
ἀνδρῶν
ἀν&έσχε
ἀν&εβόησε
ἀν&έβλεφ’
ἀν&εβόα
...
ἀνεμόεν
ἀνεμόεντι
ἀνέμοις
ἄνεμον
ἄνεμος
ἀνέμων
ἀνεμώκεος
ἀνέμων
ἀν&έξεται
ἀν&έξηι
...

The tricky part is, of course, to realize which ἀν is the actual prefix (ἀνα- or alpha priva-
tivum) and which is simply part of a root that incidentally shares letters with the prefix.

Here ChatGPT 4 did exactly the same cuts as I did, whereas the newer 4o (“omni”)
basically made the cut as ἀνε& throughout.24

Given the extremely many tricky interfaces (sandhi) that can appear between the root
and these prefixes, an extensive bug testing of ChatGPT’s capabilities would be necessary
before implementing it on the whole corpus, which is beyond the scope of the present work.
However, it is no doubt feasible, and the topic provides a segue to the discussion of the
conclusion.

3 Conclusion
3.1 Summary
In this report I have described how I created “a dictionary compiled from grammars and
lexica” (among other sources), serving to disambiguate “the ambiguous vowel length of α, ι
and υ”, the dichrona. Given three hundred thousand morphologically-tagged tokens from all
the extant Ancient Greek tragedies, I culled out around forty-two thousand tokens containing
the ambiguities in question. I crawled two dictionaries, a Ruby lemmatizer and a repository

244o is the first model to be trained not only on text, but also on audio and visuals. As with all AI technology,
the correlation between performance and training is irreducibly unpredictable, so there is nothing surprising
about a newer model behaving worse. (Cf. OpenAI 2023) For the record, my prompt looked like this:

You are a pithy Ancient Greek morphological analysis machine, skilled in separating the prefix
from the rest of the word with a single ampersand (&). E.g., given the prompt ’προσβαλοῦσα’ you
return only ’προσ&βαλοῦσα’. If there is no prefix, as ἤνεγκα, you return the word as-is. NB: You
cannot add any other characters than ampersand (&), and only one & per word.

Only analyse the following prefixes, and numerous variants due to apocope, elision, aspiration,
assimilation and their combinations: ἀ-, ἀν- (so called alpha privativum, e.g., ἀθάνατος), ἀμφι-
(e.g., ἀμφιθέατρον), ἀντι- (e.g., ἀντίθεσις), ἀπο- (e.g., ἀποθνῄσκω), δια- (e.g., διάλογος), δυσ- (e.g.,
δυστυχής), εἰσ- (e.g., εἰσάγω), ἐκ-, ἐξ- (e.g., ἐκκλησία), ἐν- (e.g., ἔνδοξος), ἐπι- (e.g., ἐπίθεσις), κατα-
(e.g., καταστροφή), μετα- (e.g., μεταμόρφωσις), παρα- (e.g., παραβολή), περι- (e.g., περίμετρος), προ-
(e.g., προφητεία), προσ- (e.g., πρόσθεσις), συν-, συμ- (e.g., συμπάθεια), ὑπερ- (e.g., ὑπεράνω), ὑπο-
(e.g., ὑπόθεσις).

When given a tsv, you respond with a list of the analyses, exactly one word per line.

28

of scanned verse, and carefully collated the macron data from all four sources. I then showed
a number of ways in which the percentage of macronized dichrona can be increased algorith-
mically, three solely “shuffling around” the data already contained in the sourced list, and
two requiring formalization of morphological rules, taking as examples nominal forms and
prefixes.

Relevant to metrical software projects like Dionysus Recomposed, there are 55 495 dichrona
in open syllables (“non-hidden”) in the dictionary, out of which more than twenty thousand
were macronized by the sources and the examples of algorithmic approaches together. The
number of unique tokens in the list is 32 535, with the total number of macra and brevia
roughly equal, which means that, in theory, each token has on average at least one of their
dichrona disambiguated.

3.2 Whither Greek Macronizer?
In the best of worlds, the final Makron software will be akin to the Latin macronizer of
Johan Winge, albeit with its own set of problems and possibilities.25 Perhaps because every
single Latin vowel is dichronon, Latin dichrona were already rather thoroughly and orderly
compiled before Winge commenced his work, enabling him to focus on the morphologizers
and to disambiguate minimal pairs.

Minimal pairs in Greek, on the other hand, are comparatively rare—the only truly com-
mon example being ἄν = ἔαν versus ἄν simpliciter, whereas the salient examples from the
present and imperfect indicatives of ἵστημι, darling conjugation of dichrona scholars, e.g.
ἴστης (present ‘you’re putting’ versus imperfect ‘you used to put’), are not present at all in
the tragic corpus. And when it comes to compilations of Greek dichrona—well, you can’t call
the situation orderly and thorough.

Thus the weights must be shifted mutatis mutandis: the importance of morphological
analysis for a Greek macronizer is less than for a Latin, whereas the importance of the
quality control of the raw dichrona data is greater.

I believe that a combination of leveraging AI for automatic morphological cuts, program-
ming using them, and simply manual sorting of the large amount of odd redundancies will
quickly sort out the remaining dichrona in our corpus. But let’s not stop there. All the
pipelines, scripts and work flows set up for the present project are ready to receive new
larger corpora, ideally leading to the macronization of the open syllables of the entire An-
cient Greek corpus, e.g. as represented by the TLG. Yes—not only verse! As scholars are
becoming more and more aware of, already the ancients themselves marked the prosody of
prose texts, whether simply disambiguating or as rhetorical and stylistic analysis.26 If they
could, we should.

I claim that this program is not idealistic; for one thing, there is a strong positive loop
inherent in macronization, with the already macronized corpus serving to triangulate the
remaining parts. The final proof of this claim will be part of my doctoral thesis.

25See Winge 2015, the web interface and the Github repository.
26As one recent scholar put it, “the interest in prosodic signs witnessed in grammatical treatises, annotated

literary texts, and advanced school exercises spilled over into the realm of everyday texts, where, depending on
the genre and purpose of the documents they were transcribing, writers found occasional practical use for their
training in προσῳδίαι” (Ast 2017, p. 157). On vowel length diacritics, see specifically Colomo 2017.

29

https://alatius.com/macronizer/
https://github.com/Alatius/latin-macronizer/

4 Appendix I: macrons.tsv
Here is an example of fifty lines from the middle of the TSV (Tab-Separated Values) macron
dictionary:

token tag lemma macron source
κατειργάσασθε v3paie---μικατειργάσκω ^2^8^10 wiktionary
μικρόν a-s---ma-μικρόν _2 wiktionary
μικρά a-s---fn-μικρός _2^5 wiktionary
μικρά a-p---na-μικρός _2^5 wiktionary
μικρὰ a-s---fn-μικρός _2^5 hypotactic,barytone
μικρὰ a-p---na-μικρός _2^5 hypotactic,barytone
μικράν a-s---fa-μικρός _2_5 wiktionary
μικρὰν a-s---fa-μικρός _2_5 barytone
μικρᾶς a-s---fg-μικρός _2_5 ifthimos
μικροῖς a-p---nd-μικρός _2 wiktionary
μικροῖς a-p---md-μικρός _2 wiktionary
μικρόν a-s---na-μικρός _2 wiktionary
μικρόν a-s---ma-μικρός _2 wiktionary
μικρὸν a-s---na-μικρός _2 barytone
μικρὸν a-s---ma-μικρός _2 barytone
μικρός a-s---mn-μικρός ^2 wiktionary
μικρὸς a-s---mn-μικρός ^2 barytone
μικροῦ a-s---mg-μικρός _2 wiktionary
μικροῦ a-s---ng-μικρός _2 wiktionary
σμικρά a-p---na-μικρός _3_6 wiktionary
σμικρά a-s---fn-μικρός _3_6 wiktionary
σμικρὰ a-s---fn-μικρός _3_6 barytone
σμικρὰ a-p---na-μικρός _3_6 barytone
σμικράς a-p---fa-μικρός _3_6 wiktionary
σμικρᾶς a-p---fa-μικρός _3_6 ifthimos
σμικρᾶς a-s---fg-μικρός _3_6 ifthimos
σμικροί a-p---mn-μικρός _3 wiktionary
σμικροὶ a-p---mn-μικρός _3 barytone
σμικροῖς a-p---nd-μικρός _3 wiktionary
σμικρόν a-s---na-μικρός _3 wiktionary
σμικρόν a-s---nn-μικρός _3 wiktionary
σμικρόν a-s---ma-μικρός _3 wiktionary
σμικρὸν a-s---ma-μικρός _3 barytone
σμικρὸν a-s---nn-μικρός _3 barytone
σμικρὸν a-s---na-μικρός _3 barytone
σμικροῦ a-s---ng-μικρός _3 wiktionary
σμικροῦ a-s---mg-μικρός _3 wiktionary
σμικρῷ a-s---md-μικρός _3 wiktionary
Σμικρῷ a-s---md-μικρός
σμικρῶν a-p---ng-μικρός _3 wiktionary
σμικρῶν a-p---mg-μικρός _3 wiktionary
μικροτέρων a-p---mg-μικροτέρων
μικρῶι a-s---md-μικρῶι
μίλακος n-s---fg-μίλακός
μίλακι n-s---fd-μίλαξ ^6 breve_ultima
μιμήσομαι v1sfim---μιμαίνω _2 wiktionary
Μίμαντα v-sapama-μίμας ^2_7 hypotactic
μιμεῖσθαι v--anm---μιμέομαι _2 wiktionary
μιμοῦ v2spme---μιμέομαι _2 wiktionary
μίμημ’ n-s---nn-μίμημ
μίμημ’ n-s---na-μίμημ
μιμήματα n-p---nn-μίμημα ^8 breve_ultima
...

30

5 Appendix II: Postag Legend
The nine positions of POS tags (- - - - - - - - -)27:

1: part of speech

n noun
v verb
t participle
a adjective
d adverb
l article
g particle
c conjunction
r preposition
p pronoun
m numeral
i interjection
e exclamation
u punctuation

2: person

1 first person
2 second person
3 third person

3: number

s singular
p plural
d dual

4: tense

p present
i imperfect
r perfect
l pluperfect
t future perfect
f future
a aorist

5: mood

i indicative
s subjunctive
o optative
n infinitive
m imperative
p participle

6: voice

a active
p passive
m middle

27Source: https://github.com/cltk/greek_treebank_perseus

31

https://github.com/cltk/greek_treebank_perseus

e medio-passive

7: gender

m masculine
f feminine
n neuter

8: case

n nominative
g genitive
d dative
a accusative
v vocative
l locative

9: degree

c comparative
s superlative

32

Bibliography
Allen, W. Sidney (1987). Vox Graeca. 3rd ed. Cambridge.
APA (2024). Technical Details about GreekKeys Unicode 2008.
Ast, Rodney (2017). “Signs of Learning in Greek Documents: The Case of Spiritus Asper.”

In: Signes Dans Les Textes, Textes Sur Les Signes. Érudition, Lecture et Écriture Dans
Le Monde Gréco-Romain. Ed. by G. Nocchi Macedo and N. Scappaticcio. Papyrologica
Leodiensia 6. Presses Universitaires de Liege.

Chamberlain, David (2023). hypotactic.Com.
Classical Studies, Society for (2021). ABOUT NEW ATHENA UNICODE v. 5.008 (August

2021).
Colomo, Daniela (2017). “Quantity Marks in Prose Papyri.” In: Signes Dans Les Textes, Textes

Sur Les Signes. Érudition, Lecture et Écriture Dans Le Monde Gréco-Romain. Ed. by G.
Nocchi Macedo and N. Scappaticcio. Papyrologica Leodiensia 6. Presses Universitaires de
Liege.

Crowell, Ben (2024). Ifthimos.
Devine, A. M. and Laurence D. Stephens (1994). The Prosody of Greek Speech. New York-

Oxford.
Emde Boas, Evert van et al. (2019). The Cambridge Grammar of Classical Greek. Cambridge:

Cambridge University Press Cambridge.
Herodianus, Aelius (1870). Περὶ Διχρόνων. Ed. by Augustus Lentz. Vol. 3.2. Grammatici

Graeci. Leipzig: Teubner. 7-20.
Johnson, Kyle P. et al. (2014–2021). CLTK: The Classical Language Toolkit.
Kardos, Marton and Jan Kostkan (2023). odyCy.
Kuhn, Friedrich (1892). Symbolae Ad Doctrinae Περὶ Διχρόνων Historiam Pertinentes. Bres-

lau.
Lauxtermann, Marc (2022). “Buffaloes and Bastards: Tzetzes on Metre.” In: Tzetzikai Epey-

nai. Eikasmos: Studi Di Eikasmos Online 4. Bologna: Pàtron Editore, pp. 117–132.
ObsequiousNewt (2017). Grc-Conj.
OpenAI (2023). GPT-4 Technical Report.
Pontani, Filippomaria (2020). “A new Herodianic treatise on dichrona and a new fragment of

Hipponax.” In: Revue de philologie, de littérature et d’histoire anciennes XCIV.2, pp. 163–
191.

Probert, Philomen (2003). A New Short Guide to the Accentuation of Ancient Greek.
Tauber, James K. (2017). Pyuca: Python Unicode Collation Algorithm Implementation.
— (2019). “Character Encoding of Classical Languages.” In: Ancient Greek and Latin in the

Digital Revolution. Ed. by Monica Berti. Berlin, Boston: De Gruyter Saur, pp. 137–158.
— (2020). Greek-Inflexion.
Teodorsson, Sven-Tage (1978). The Phonology of Attic in the Hellenistic Period. Studia Graeca

et Latina Gothoburgensia.
Unicode (2023a). Unicode Chart Combining Diacritical Marks.
— (2023b). Unicode Chart Greek and Coptic.
— (2023c). Unicode Chart Greek Extended.
— (2024a). Greek Language and Script.
— (2024b). Unicode FAQ on Greek Language and Script. url: https://www.unicode.org/

faq/greek.html (visited on 02/28/2024).
Winge, Johan (2015). “Automatic Annotation of Latin Vowel Length.” Uppsala.

33

https://www.unicode.org/faq/greek.html
https://www.unicode.org/faq/greek.html

	Introduction
	Prosody and Dichrona
	Dichrona and Meter
	Research Question and Dionysus Recomposed
	Epistomology of Quantity

	Technical Report: Problems, Solutions, and Results
	Preparing the Tokens
	Mending Tokens
	Unicode
	Sieving Tokens

	Crawling for Macrons
	Wiktionary
	Hypotactic
	Ifthimos
	LSJ

	Conscientious Collation
	Algorithmic Approaches
	Morphology

	Conclusion
	Summary
	Whither Greek Macronizer?

	Appendix I: macrons.tsv
	Appendix II: Postag Legend
	Bibliography

